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SUMMARY 

A non-linear theory Is developed for constant-strain waves in 

elastic strings. The speed of longitudinal and transverse waves is 

related to the strair and tension. The results can be used to cal- 

culate tension due to impact and thus breakxng loads. Some gener- 

alizations are sugg.sted.    ) ^~   .  

INTRODUCTION: BQUATIONS OP MOTION 

If it is assuned that the tension T in i string ie given by 

T = To + F(o) (1) 

where 

T = initial tension = constant 
o 

o ■ strain and F(a) = E a 

then solutions to the equations of motion can be; given for the propa- 

gation of waves of constant strain and tension.  Guch solutions are 

not restricted to small displacements or slopes and are hence of 

special interest. The vaves which propagate consist of straight line 

segments which move with constant velocity. The accleratione are 

thus zero except at points where the velocity Jumps. At these points 

the acceleration is infinite.  A convenient way to discuss the speed 

of propagation is by considering the differential, aquations of motion. 

The differential equations can be considered to contain the ImpuJse- 

momentum laws. Another approach is to apply the impulfe-monentum laws 

directly. 

Newton's laws of motion applied to an infinitesimal element of 

string, are 

putt = (T cos e)x (2) 

pvtt » (T sin e)x (.) 
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where (see Figure l) 

u, v -» horizontal and vertical dleplacementa rospec- 

tlvely of point located at x In unstrained string. 

9 « Inclination of string 

p ■ mass per length ■ constant 

Ho external forces are considered. The horizontal projection of an 

element originally of length A x 1B (1 + u ) Ax; the vertical pro- 

x . Therefore 
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(6) 

The characteristic lines, vhlch represent the locus of possible dis- 

continuities or wave fronts, can be found for the system of equations 

(1) - (6). Two seti    haracterlstlcs appear representing different 

wave velocities. These speeds are 

c2' rs 11 o     h i; a (8) 

C,   Is the speed of lo^ltudlnal waves  In a solid bar of the  same 

material. 

Cp,  for small strains, becomes the speed of transverse waves In a 

string. 

For most applications C. >   C2.     It should be noted that one  speed 

of propagation Is variable and depends on the strain o.    The details 
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of the characteristics are not shown here since the same result about 

propagation speeds Is derived by physical considerations in paragraph 2. 

The general solution for constant strain waves can be written in 

the form 

v (x, t) « linear function of (x, t) 

u (x, t) = linear function of (x, t) 

Then since v , u , v , u are constants it Is easily seen from (l) - (6) 

that Ö, a, T are constants and that the differential equations (2) and 

O) are satisfied trivially, except where the velocity Jumps. The 

sioplest example leading to waves of this type is discussed below. 

RADIATION PROBLEM:  SEMI-IHFIHITE STRIHG 

Conslier the string at rest initially with zero displacement 

u x u = v « v = D    t = 0 (9) 

Also, consider at first an infinite string -co < x < oo. Let a con- 

stant vertical velocity be imported at the point where x => 0 when t = 0. 

Then by siimnetry u =» 0 at that point for all time and hence x = 0 there. 

The boundary conditions are thus, for t>0. 

v (0, t) = V = constant. (10) 

u (0, t) » 0 

It is now sufficient to consider x > 0, The solution of the correct 

fom Is 

V (t - —)   t > — v   c        c 
V V 

v - (11) 

0 t <~ ^ c 
V 
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U V 

t < — 
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u 

(12) 

vhare 

c - velocity u wave«, and c  = velocity of v waves, 
u        ^       *     u        J 

Tcm  vorioua regions in the (x, t) diagram and the shape of the waves 

are shown in Figure 2. The shape of the waves was detemlned by the 

fact that c < c and thk.t u = 0 ac x - 0 and far  x > c t.  It 

can be shown, and is verified below, that the momentum equations can- 

not be satisfied if c is assumed greater than c . The undetermined 

constants in (11) and (12) are Ü, c , c . These are computed by ap- 

plying the horizontal impulse-momentum law along x <= c t and the 

norizontal Mid vertical laws along x = c t. 

Before doing this it is convenient to compute the slope and the 

strains which are constant in the various regions. We have 

U_ 
c 

U_ 
c 

«2 c 
1 --I 

c 
u 

ir  U ,2  V2 

I      V     c —5 c 
V 

c u 

.fx 

c 

v2 -0 
X 

sin ©, 
c 

(15) 

V    c 
V 
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c 
0« - Ö- = 0- ■ 0 COB Ö, = * 

(l > -) * -5 
V    c 

V 

The eubscrlpts denote the regions shown In Figure 2. 

Consider now the vertical motion, rormally, ve may write 

T sin 6 - T, sin 8^^ H (t - £-) (lU) 
v 

where 
1  z ^ 0 

H (z) => unit step function = 
0  i <0 

•HJUS (3) becomes 

pvtt - - i- ^ sin ©j^ B (t - f-) (15) 

where 5 ■ delta f-naction. Integration of (lr with respect to t gives 

the velocity Jump across x - c t 

- |- T^ sin e1 = pv    which by (11) = pV        (16) 
v t 

Similarly 

T cos © - T1  cos ^ H (t - ~) + T0<E (t - ^-) - H (t - |-)> 

TJI - H (t - i-)>     (17) 
u 

and 

+ T,<] 
x 

i- (T - T ) = p (^ - VL ) vhich by (Ik)   *  -AH-     (18) 
u t     "'t -    V 

c 
u 

^- T2 - |- T, cos 91 - p  (n^    - u ) which by (ih) 
V        V t     t 

^-^H_      (19) 

u 



' 

P-559 
-9- 

Rov since o., o« are known In terms of (U, c , c ), T, and T2 are known 
ff 

functions of U, c , c and th*» Eqs. (16), (18) and (19) determine U, c , 
v    u 

c   .    i'kat  is, T,  and T0 can be expressed as u '12 

T,   e T    + E 1       o o, . T0 . E J|(1.2.)%4 -  4 

Thus  (18) becomes 

T2  = T0 + E  o2  = T0 - E 

T^  = T 

u 

1--^ c u 

Ä 

55 " ^ 

U_ 

1 E-^ 
c c 

1.^ u  1-^ c c 
u u 

(20) 

from which c    may be found as 

u     I p 1 (21) 

It follows that (16) and (19) are two equations fcr U and c  , and 

these become 

or 

T1 sin ei = - Q Vcv 

T,  cos ©,   = T    - p Uc 1 1        o      K      u 

V_ 
- p Vc ' c 

tan 0,   »      a.        which by (l7^)  = - 1 " »T    - p l!c p uc o      K      u 
V 

Tl -  (P Vcv)2 +  (To - p ücu)2 =  (T0 + E  a^2 

(22) 

(23) 

(2U) 

(2^) can be solved for U to yield 

U 

2 2 c    - c 
V 

c    + c 
U V 

(25) 

T 
2   o 

where c »= — = speed of v waves in a small displßcement theory. 

Using (25), {2h)  is the equation for c . 
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Before solving for c    It Is «eeful to find exprcssione for the 

strain.    Using (a^) 

V c v      I u V 

also 

T    - p Uc    = pc 
0 U        K   V 

c    + c    c 
U     V 

c    + c 
U V 

Hence   (2^) becomes 

T 
which can be solved for a. 

(27) 

Tl2 = P2 cv2 ^v2 (1 + 01)2> = (To + S 01)2 (28) 

2 2 .rs 2 c       - c ,. ^/c     +  0.   c 

C - C U V ' 1 
U V 

A ccaparlson of (29) and (20) yields the Interesting result that 

o1 =  a2 and T1 =• T2 (^0) 

The strain and tension have the same constant value over the entire 

disturbed part of the string. 

Now using (27) and (20), equation (2^) yields the following 

quartic equation for c (V, c , c). 

2  2 
(c - c ) (c    + c c v u   v        u v 

)2 . V2 (c 2 - c 2)2 
'        v U     V ' 

P    p    p o 
cv (cu " C)      W 

When c is found from this equation the strain Is given by (29). Two 

Uniting cases are of Interest 

(1) V Is small; ("31) shows that as v -♦ 0 a solution exists Inde- 

pendent of V, namely c " c.    The strain Is zero and this 

theory goes over to the usual linearized theory. 

o 
(11) c ■♦ 0; waves are sent out in a string whose Initial tension 

is zero. Writing V « a c 

\ 

u 

= \ c 
V     u 

> (32) 
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(55) becones 

\    (1 + a ) - 2 v - 2 a   \   + a^ - 0 (55) 

For a, \ « 1 an approxloate solution to (55) can b« obtained by ne- 

{lecting the X.   term in (55).    Solving the resulting cubic equation 

yields 

x-^ + M«2) W 

Hence, approximately , « 

cv = (^)
T vT (55) 

The last result clearly shows the non-linearity dependence of trans- 

verse wave speed on incoming velocity.    The corresponding expression 

for strain is 
h 

1      . 1 /V x 5 '!-—r^r-^^y t'6' 
(Äy • 2' -1 

Now T, =■ Tp ■ E o, so that (56) con be used to compute the velocity 

of motion which would break a given string. 

It can be noted that the stress and strain are Independent of the 

area of string. The inclination of the string is given by 

1   V 5/!' / 1   cu ^   1     1 ,V 1/5 

eind the constant force required to produce the wave is 

E   V  5^ ri = -TiElnei^:i7T^ w u 

Gome typical numerical valuer are those for 5/16" carbon steel 

^able where E - 'K? x 105 lbs, c > 17,0^0 ft/sec; if V ■ 690 ft/sec 

T1  = 5900 lbs 09) 
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Reflect on problems can b« treated in the same way. It can be 

ehovB that the reflections of the longitudinal wave at an end travels 

back with the speed C. f relative to the original coordinate x. Upon 

reflection from a fixed end (u =» 0) the strain and hence that part of 

the tension due to strain is doubled. Upon reflection from a free 

end the strain becomes zero and the tension is then T . o 

The reflection of the returning longitudinal wave with the on- 

coming transverse vave can also be worked out in the same way. 

COBCLUDHIQ REMARKS 

It has been shown how the problem of propagation and reflection of 

constant-strain waves in an idealized elastic  string can be treated. 

The results are especially interesting since they are not limited to 

small deflections.    Longitudinal and transverse waves occur which 

travel with different speeds relative to the string.    One limiting case 

shows how a wave propagates because of elasticity in a string with zero 

initial tension. 

The results have a practical application in estimating the sud- 

denly applied constant force which will break a rope.    An example  of 

this was presented for zero  initial tension which clearly shows the no- 

linear dependence of tension on force  (Eqs.   (')8)   -   C+O).    It should be 

remarked that the results for the idealized string are  independent of 

the cross-section area,   so  long as the string b< haves  in a similar 

manner. 

The case of varying velocity applied to a string can be treated by 

replacing the velocity curve by segmcnte of com ^ant velocity.    Then the 

actual motion can be approximated by various  constant-ptraln waves,     simi- 

lar problems occur where a load moves as a string. 


